Robust real-time face detection based on cost-sensitive AdaBoost method
نویسندگان
چکیده
This paper presents a method of detecting faces based on Cost-Sensitive AdaBoost (CS-AdaBoost) algorithm. The two main differences between CS-AdaBoost algorithm and the naïve AdaBoost are that (1) unequal initial weights are given to each training sample according to its misclassification cost, and (2) the weights are updated separately for positives and negatives at each boosting step. Due to these two variations, every stage of the face detector trained by CS-AdaBoost algorithm can more effectively focus on face samples than by the naïve AdaBoost to achieve robust and high detection rate with modest false alarm rate, so that the final face detector can yield high detection rates, very low false positive rates, and robust performance. Experiments also demonstrate the effectiveness of our method.
منابع مشابه
Real-time rotation invariant face detection based on cost-sensitive AdaBoost
This paper presents a novel method of detecting faces at any degree of rotation in the image plane based on CostSensitive AdaBoost (CS-AdaBoost) algorithm. The method first employs a cascade of very simple classifiers trained by CS-AdaBoost to determine the possible orientation of each input window and then uses an upright face detector also trained by CS-AdaBoost to verify the derotated face c...
متن کاملCredit Card Fraud Detection using Data mining and Statistical Methods
Due to today’s advancement in technology and businesses, fraud detection has become a critical component of financial transactions. Considering vast amounts of data in large datasets, it becomes more difficult to detect fraud transactions manually. In this research, we propose a combined method using both data mining and statistical tasks, utilizing feature selection, resampling and cost-...
متن کاملFace Recognition Based on Real AdaBoost and Kalman Forecast
In this paper, a novel face recognition method based on Real AdaBoost algorithm and Kalman Forecast is implemented. Real AdaBoost algorithm can obtain great accuracy with machine learning. Meanwhile, Kalman Forecast is introduced to track human faces detected, making face detection more efficient. We tested our new method with many video sequences. The detection accuracy is 98. 57%, and the ave...
متن کاملImproved AdaBoost Algorithm for Robust Real-Time Multi-face Detection
Face detection is the basis for research topics such as face recognition, facial expression recognition and face attribute analysis and it plays a crucial role in the field of computer vision. Traditional methods are difficult to meet the needs of robust real-time multi face detection because of some influencing factors such as head pose, image scene, illumination condition and so on. In this p...
متن کاملEfficient face detection method with eye region judgment
Real-time face detection technology can be applied in many industrial or commercial products. Many face detection applications use the traditional Adaboost face detection system which is proposed by Viola and Jones in 2004. Viola and Jones used the Adaboost training algorithm and the Haar-like features in their proposed traditional Adaboost face detection system, which has a high detection rate...
متن کامل